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E F F E C T  O F  T H E  P E R F O R A T I O N  O F  T H E  P I P E L I N E  W A L L  

O N  T H E  V E L O C I T Y  O F  P R O P A G A T I O N  O F  L O N G  

C O M P R E S S I O N  W A V E S  IN A F L U I D  

N. M. Kuznetsov and E. I. Timofeev UDC 539.4.015.532.59 

A model for predicting the velocity o f  a weak compression wave propagating over a fluid in a tube with 
perforated holes is suggested. The fluid is retained in the perforations by surface tension. The wave velocity 
weakly decreases with an increase in the pressure drop over the wave. Examples of  particular predictions are 

given. 

The sound wall and shock wave propagation over the fluid in tubes has specific features which are of interest from 

both theoretical and practical points of view. The speed of sound in such systems can be fairly different from the case of an 

infinite medium. The dependence of the shock wave speed on the pressure can be also quite peculiar. 

The speed of sound C for fluids in tubes has been calculated by N. E. Zhukovsldi [1] and is defined by the equation 

1 + 2ropoC~/lE ' (1) 

where E is the Young modulus for the material of tube walls; r o and e are the radius of the tube and the thickness of its 

walls, respectively (it is assumed that 1 << to). 

We next consider sound waves and finite-amplitude waves in the fluid that occupy the tube with perforated walls. It 

is assumed that the fluid does not wet an external surface of the tube. All perforations are of the same size (diameter A), and 

on the average, are uniformly distributed over the tube surface. It is assumed that the tube is of an infinite length, and that 

the wave length is much larger than other linear sizes in the problem [the tube diameter and average distance (A + B) 

between the perforations]. At the same time, the period when the fluid is present in the wave is large in comparison with the 

time of establishing a static condition of the fluid in perforation holes..Capillary forces prevent the fluid from effluxing out 

of the holes. The maximum increment in pressure P* in the wave at which the capillary forces still retain the fluid in the 

holes (see Fig. 1) is equal to P* = 4a/A. The gravity is not taken into account. This is admissible in the case of a tube in a 

horizontal position in the gravity field and when the inequality a > > pogAr o holds. 

A plane weak shock wave of infinite length propagating over the fluid in the tube (with no allowance for the friction 

against the walls) is completely determined by the equations of conservation of mass, momentum, and isentropic compression 

of a fluid 

ooUo (So + S.a ) = pxU~ (So + ASp) + p~UoSA ; 

(Po + o0ug) (So + s,,) = (P1 + plu, 2) (So + asp)+ (P1 + plug) (sA + Sh); 

P = P (P), P ---- Pl --  Po, P = Pl - -  Po, 

(2) 

(3) 

(4) 
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Fig. 1. The scheme of the perforated pipeline: 1) compres- 

sion wave front, 2) undisturbed liquid surface; A, capillary 

diameter; B, mean distance between the capillaries; ro, 
pipeline radius; l, wall thickness; R, radius of curvature of 

the disturbed liquid surface. The arrow indicates the direc- 

tion of the wave motion. 

where Pi, Pi, and U i are the pressure, density, and velocity of the liquid in the coordinate system of the shock wave front 

(subscripts i = 0 and i = 1 correspond to the regions prior to and beyond the front); S O and S O + AS o are the area of the 

transverse cross section of the tube at the pressures Po and P1 

(5) ASo = 2nroAro; Aro = lE' 

Here, E' is the efficient value of the Young modulus for a perforated tube, connected with the Young modulus E for a solid 

material by the relation E' = (1 - rnA2/4)E, where n is the average number of holes per unit of the tube surface; S A and 

S h stand for the additional constituents of the area of the "tube" transverse cross section, associated, respectively, with the 

volume of the holes and with the fluid emergence outside the outer radius of the tube (Fig. 1). For long waves we cannot 

take into account the discreteness of hole distribution, and can introduce the averaged efficient values of S A and S h 

SA = 2~ronVA = a*A*rol , Sh = 2nronVh = 2aroVh , (6) 
2 (A + B) 2 (A + B)' 

Vh = l-Ih = (R - -  hi3), h = R - -  [R 2 - -  (A/2)*] 1/~, R = 2a/P (7) 

[V h is the volume of the spherical segment of radius R (see Fig. 1)]. 

Owing to the restriction P < P* for macroscopic holes, all terms nonlinear with respect to P in (2)-(4), excluding the 

term Sh, are negligibly small. Here the dependences of the tube radius and fluid density on the increment in pressure are 

implied. The first one is defined by the linear approximation (5), and the second follows from (4)and is presented in the 

form P = Cf2a. The following expressions for U o here can be found from (2) and (3) 

1 + SA + Po (ASo + Sh)lP 

= ( 1  - -  gA)/c  + p. (, So + (8) 

For P << P* the equality P >> h holds and from (6) and (7) it follows 

128a' 64at0 (A 4- B) *' 

A-S 0 = m$o/So, SA = SA/So, Sh = Sh/So.  

(9) 

In a wide range of parameters Eq. (8) assumes the following further simplifications: 

1) assuming that the total area of the holes is at least not larger than the rest surface of the tube, from (6) we obtain 

SA << I; 
2) the value of PoASo/P for a not very thin-wall tube (for example, for e/r 0 > 10 -3) is much less than unity, since 

when Po = i atm, the ratio E/P for metals is very high; 
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Fig. 2. Dependence of the compression wave velocity on the pressure drop at the wave 

front: curves 1, 2, 3 are constructed at A = B = 10 -5 m, e = 10 -4 m, r 0 = 1, 2, 3 cm; 

4, 5) f o r A  = 2 . 1 0  - S m , B  = 10 - S m a n d l =  10 -4 and 10 - S m ; E '  = 2 . 1 0 1 1 N / m  2 . U  o 

m/sec; P, Pa. 

Fig. 3. Dependence of the compression wave velocity on the pipeline radius: curves 1 and 2 

correspond to the pressures P = 103 and 2.7 • 104 Pa; A = B = 10 -5 m, E'  = 2 .  l0 ll 

N/m 2, l = 10 -4 m. r0, cm. 

3) the second term in the numerator of (8), as can be easily verified, is also small as compared to unity within the 

wide range of the values of a and A (for example, at a = 0.073 N/m, the factor of surface tension of water at the tempera- 

ture 20~ and A < 1 cm). 

Having satisfied all of the three indicated inequalities, instead of (8) we write down 

U~ = C~ (10) 

1 +poCk( 2to q___~._) " 
\ e't 

For P << P* the speed U o, according to (9) and (10), does not depend on P and can be put in the form 

U~ = C~ (11) 
1 q- p0C~[ 2r~ rcA3 I " 

L e ' t  + 16P*r-o-~ + B) '  

This exactly is the speed of sound in the original system under consideration. In the case of a solid tube, i.e. at A =- 0, Eq. 

(11) coincides with (1). 

In the case of finite intensities of the wave, its rate decreases with an increase in P. This follows from a nonlinear 

positive dependence of the volume V h on the pressure: d(Vh/P)/dP > 0. The dependence of U o on P and r o for water is 

shown in Figs. 2 and 3. In systems with such a dependence of U o on P, there are isentropic compression waves of finite 

amplitude and shock expansion waves (in their motion, expansion waves are compressed, thus converting to shock compres- 

sion waves, whereas compression waves are expanded). However, a relative decrease in the speed U o with the pressure P 

(for the values of the parameters of the same order as in the case presented in Fig. 2) is very small and it leads to significant 

deformation of waves only when they pass over the distances, large enough so that viscosity effects can be significant. 

Based on the calculations performed, one can draw the following conclusions. The presence of perforation holes in 

the tube wall leads to a decrease in the speed of the propagation of weak disturbances over the fluid occupying the tube, as 

compared to the case of an infinite fluid and the case considered in [1]. It can be useful to know the value of U o in predicting 

hydrodynamic processes, for example in systems of transpirational cooling. 

NOTATION 

Cf, speed of sound in an infinite fluid; A, hole diameter; C, speed of sound; B, distance between the holes; P, 

pressure drop at the compression wave; a, surface tension coefficient; g, acceleration of  gravity; Po and P1, pressure ahead 
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of the compression wave and beyond its front; Po and Pl, fluid density ahead of the compression wave and beyond its front; 
U o and U1, fluid velocities in the coordinate system of the compression wave front; So, initial area of the tube; ASo, incre- 
ment in area. 
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D I E L E C T R I C  V I S U A L I Z A T I O N  O F  T H E  C O N V E C T I V E  

INSTABILITY IN N O N P O L A R  N O N V I S C O U S  FLUIDS 

A. A. Potapov UDC 532.517:537.226 

The dielectric method is used to study the convective instability in nonpolar nonviscous fluids "heated from 
below" at different temperature gradients (0.1-0. 005 K/cm). Different types of resonant cavities are used as 
measuring cells," their specific feature is the pronounced nonuniformity of the electromagnetic field which has 
become a decisive factor in convective flow detection. 

Heat convection in a heated fluid layer is the simplest case of hydrodynamic instability and, at the same time, is a 
striking example of how a system disturbed from a thermodynamic equilibrium state can change to a highly ordered state. In 
hydrodynamics, convective instability is "one of the most curious and difficult problems of classical physics" [1]. Benard's 
effect is the most striking example of the convective instability. It manifests itself in forming a regular cellular structure of 
the fluid heated from below under certain conditions. As these processes are fundamental in nature, Benard's convection has 
become the subject of many theoretical and experimental studies. 

At present the experimental methods of studying convective flows have attained certain success. The traditional 

methods (such as hot-wire, photo visualization, acoustic, interferometric) continue to improve. The high effective laser 

Doppler method of measuring spatial and time parameters of flows [l-5] has been developed. 

The measured parameters of natural convection are small in magnitude and require special recording facilities. Great 
difficulties spring up when determining the spatial-time temperature, pressure, and velocity fields of a test medium in closed 
volumes. Hence, further improvement of the visualization methods of convective flows remains urgent and expedient. 

The ability to investigate hydrodynamic processes by the dielectric method is based on the close relationship between 
the dielectric properties of the substance and its molecular density [6]. The matter equations of electrodynamics contain the 
dielectric permeability (DP) which refers to the specific characteristics of the substance and depends on the mass density and, 
hence, on the flow and heat transfer parameters of this substance. In a more general form, this relationship may be given as 

[6] 

F (e) = 4~xcz9 
- - ,  (1) 

where F(e) is the dielectric function representing some structure composed of static c s and quasioptic c ~ dielectric permeabil- 
ities and the number coefficients; ~ is the polarizability of molecules;/x is the molar mass; p is the substance density. 
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